発表言語 |
英語
|
開催日 |
2011年05月19日 10時00分
|
終了日 |
2011年05月19日 11時30分
|
開催場所 | 京都大学理学部3号館 (数学教室) 110講演室 |
タイトル |
幾何学連続講義 "Aspects of Quantitative topology - The bounded category, its extensions, analogues and applications" |
分野 |
幾何
|
講演者名 | Shmuel Weinberger |
講演者所属 | University of Chicago |
概要 | The bounded category of a discrete metric space is a basic object over
which to organize metric measurements; it is at the basis of
bounded topology and the theory of bounded propagation speed operators.
This lecture will introduce this category, and assert some
of the main technical theorems about it
(due to Quinn, Ferry-Pedersen, Roe, Yu and others)
and describe some of its applications within topology. |
備考 | These lectures are based on the joint works with Nabutovsky, Ferry, Cappell, Yan, and/or Farb. |
リンク | http://gcoe.math.kyoto-u.ac.jp/meeting/2011may_weinberger.html |
|