概要 | In this talk, we consider the initial value problems for the
Navier-Stokes equations with the Coriolis force.
We prove the local in time existence and uniqueness of the mild solution
in the framework of homogeneous Sobolev spaces.
Furthermore, we give an exact characterization for the time interval of
its local existence in terms of the Coriolis parameter.
It follows from our characterization that the existence time
of the solution can be taken arbitrarily large
provided the speed of rotation is sufficiently fast. |