概要 | The soliton resolution conjecture says that solutions of semilinear fourth-order Schrodinger equations that do not blow up in finite time should be divided as time goes to infinity into a radiative part and a nonradiative part. The radiative part corresponds to a free fourth-order Schrodinger solution. It is believed that the nonradiative part is made of a finite sum of stationary or traveling solitons in most of the cases. This statement is known to be very difficult to prove. In this talk, we show a weak form of this soliton resolution conjecture. More precisely, we show that the orbit of the nonradiative part approaches as time goes to infinity a compact set modulo translations. |