セミナー

発表言語 英語
開催日 2010年03月12日 13時00分
終了日 2010年03月12日 14時30分
開催場所京都大学理学部3号館 (数学教室) 552号室
セミナー名離散幾何解析セミナー
タイトル Mixing times and new Cheeger inequalities for finite Markov chains 
分野 解析
その他
講演者名Ravi Montenegro氏
講演者所属University of Massachusetts Lowell
概要The Perron-Frobenius theorem guarantees that a finite
stochastic Matrix satisfying the reversibility
condition has a real valued eigenbasis with eigenvalues
.
The spectral gap governs key properties of
the associated random walk. Several authors have shown lower bounds
on this gap in terms of geometric quantities on the underlying state
space, known as Cheeger inequalities. We show sharp Cheeger-like lower
bounds on , both in the edge-expansion sense of Jerrum and
Sinclair, the vertex-expansion notion of Alon, and a mixture of
both. Cheeger-like lower bounds on follow as well,
in terms of a notion of a fairly natural notion of edge-expansion
which is yet entirely new.
リンクhttps://www.math.kyoto-u.ac.jp/~kumagai/DGA.html