概要 | 離散群の多様体への作用の剛性問題へのアプローチとして,
その懸垂葉層上のダイナミクスの双曲性を用いる方法の他に,
作用の変形複体を構成してそのコホモロジーの消滅から剛性を
示す方法がある.しかし,この方法においては変形複体を
Frechet空間を用いて構成するため,複体のtamenessを示す必要
があり,一般にそれは非常に困難である.
この講演では,ある群作用について,その拡大性を用いる事で,
変形複体を有限次元のものに置き換える事ができ,その結果剛性
の証明が有限次元の線形代数の問題に帰着される,という現象が
起きることについて報告したい.
There are several methods to show rigidity of smooth actions
of discrete groups. One is dynamical method which obtain
rigidity from hyperbolicity of the dual action on the
suspection foliation. Another is to reduce rigidity to
vanishing of the first cohomology of the deformation complex
of the action. Difficulty in the latter method is that
the complex is given by (infinite-dimensional) Frechet spaces
and we need so called tame estimate, which is hard to obtain
in many cases.
In this talk, I will explain examples of group actions for
which the deformation complex is reduced to a finite-dimensional
one by an expanding property of the group, and hence,
we can show the rigidity of the actions by elementary
computations in (finite dimensional) linear algebra. |